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We rigorously investigate the size dependence of disordered mean-field models 
with finite local spin space in terms of metastates. Thereby we provide an 
illustration of the framework of metastates for systems of randomly competing 
Gibbs measures. In particular we consider the thermodynamic limit of the 
empirical metastate 1/NZN_~ ~,,l~, where /~,(q) is the Gibbs measure in the 
finite volume { 1 ..... n} and the frozen disorder variable r/ is fixed. We treat 
explicitly the Hopfield model with finitely many patterns and the Curie-Weiss 
random field Ising model. In both examples in the phase transition regime the 
empirical metastate is dispersed for large N. Moreover, it does not converge for 
a.e. r/, but rather in distribution, for whose limits we give explicit expressions. 
We also discuss another notion of metastates, due to Aizenman and Wehr. 

KEY WORDS: Disordered systems; size dependence; random Gibbs states; 
metastates; mean-field models; Hopfield model; random field model. 

1. I N T R O D U C T I O N  

In a recent series of papers [NS1 ], INS2], [NS3], the interesting role of 
the volume dependence in disordered systems having more than one 
infinite volume Gibbs state was stressed. In a particularly interesting article 
[NS3] the notion of metastates, being probability measures on the states 
of the system, was introduced to describe the volume dependence of a 
system with frozen disorder. (See therein and the discussion with [P]  
for implications on the theory of spin glasses and the relation to the 
phenomena of replica symmetry breaking and non self averaging.) It is the 
aim of this paper to provide a rigorous step into the investigation of size 
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dependence by metastates by our investigation of examples of random 
mean field systems. 

In the general case of disordered lattice spin systems in the presence of 
phase transitions, the problem of size dependence is the following. To start 
with a nontrivial situation, assume that the system admits more than one 
infinite volume Gibbs state. We consider the finite volume Gibbs measures 
~tAN(q), for a fixed realization of the disorder q, in the finite volume A N. We 
want to study a situation where the boundary conditions for the measures 
/tAN(q) do not preselect a particular infinite volume Gibbs measures. (There 
are many natural situations, where it is (practically) impossible (or not of 
interest) to select Gibbs measures by boundary conditions. This is the case 
in spin glasses, where the Gibbs measures are not explicitly known. Note 
moreover that in mean field systems it is impossible to put boundary 
conditions at all.) 

To be concrete, we imagine that, for large N, the state of the system 
will be close to a mixture of random infinite volume Gibbs measures. 
That is, a good approximation for the finite volume Gibbs measures will 
often be 

/tAx(q) ~ ~ P~V(~/) /tm(~/) (1.1) 
m 

where (flm~(q)) m ~ .It are the extremal Gibbs measures in the infinite volume. 
The problem of size dependence is: Characterize the behav ior  ofllAx(q ) 

along the sequence A N . This has some analogy with studying the orbit of 
a dynamical system with "time" N (see [NS3 ]). Possible "extremes" that 
could occur here, are e.g. 1) convergence to one infinite volume Gibbs 
measure or 2) an "erratic" sequence of states, a behavior that was named 
chaotic size dependence in [NS3]. The latter possibility could already 
happen if there are only two states between which the system is "randomly 
oscillating." A first question one may ask is: What Gibbs measures can be 
constructed through any subsequences Auk at all? More interesting even, 
led by the dynamical system analogy, the following object was introduced 
in [NS3] to describe the "trajectory" N~ - - ~ / tAx (q  ) in more detail: 

KN(q) : : N  (~ItAn(rl) 
n = l  

(1.2) 

We will refer to KN(q)  a s  the "empirical metastate" and it will the main 
object of our study. Note that K N is a random measure (through its 
~/-dependence) on the states of the system. For large N it will effectively be 
supported by the infinite volume Gibbs measures. 
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There are various scenarios for the large N-behavior of/(TN(?]), If the 
system admits just one infinite volume Gibbs measure f ~(q), the situation 
is easy: ~CU(t/) will converge to 5 u ~ .  But note that also in the presence of 
phase transitions /~N can converge to a 6-measure. (Take as an example 
the ordinary ferromagnetic 2d Ising model without disorder, at low tem- 

1 + peratures and put periodic boundary cond i t ions .  T h e n  f u  ~ 2 ( f  oo ~- f ~ )  

with NT ~ .  Consequently I~N"'~ 61/2(p+ +.u~)') 
Nondegeneracy for the metastate can arise for random systems 

because, for a fixed realization of the disorder, the finite volume fluctua- 
tions of the underlying random quantities could favor one of different 
phases even when they are equivalent in the average, which one depending 
on the fluctuation. While the structure of the phase diagram is nonrandom, 
the degeneracy between the phases in the finite volume would then be lifted 
in a random fashion. The information about how this is done lies in the 
p~(r/). A variety of large-N behavior is then possible: K N can be the Dirac 
measure on a mixture of states, it can be a mixture of Dirac measures on 
pure states, it can be a mixture of Dirac measures on mixtures. 

The second aspect is that K N itself is a random object: In what way 
will the behavior of K u depend on the realization? One could be tempted 
to expect that, as a generic behavior, KN(tl) will converge at (almost) all 
fixed q (see [NS3] for a conjecture in that direction for certain systems). 
This would be the case if the random objects fAN(t/) lost memory very 
rapidly along the path N ~ fiN(q).  In this paper we provide examples where 
this is not the case. Nevertheless, the limiting behavior of the empirical 
metastate can be described in our examples in two ways: First, it is possible 
to give pathwise approximation results, that hold for all typical realizations. 
Second, we suggest to study the behavior of the empirical metastate in law. 
This idea extends [APZ]  where convergence of the Gibbs measures them- 
selves was considered in law. We will see that, in our examples, infinite 
volume limits exist in law and give interesting information about the 
asymptotic behavior of the system along the path. 

In order to make sense out of this, one has to speak about notions of 
convergence of KN with N T 0% that is when the system approaches the 
thermodynamic limit. As is a common practice, we will choose the weak 
topologies that are inherited on the space of states and on the space of 
metastates when we choose as a starting point the product topology on the 
spin space (see Chapter 2). It makes the two spaces Polish. The physical 
content of this notion of convergence is that convergence is checked locally 
on all levels. 

In the first part of this paper we will outline the general treatment 
of random mean field models with quadratic interaction and finite state 
space. Then we will consider two representatives of this class in detail. The 
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advantage of mean field models is that they allow for explicit expressions 
for the weights p~v(~/) and good enough approximations (1.1). Our two 
examples are: 

(i) The Curie Weiss Random Field Ising Model (CWRFIM): 

Denote /2 := {1 , -1}  ~ the space of Ising spin configurations 
a = (ai)i~ ~. We will denote the set of states (which is the set of probability 
measures on /2) by ~(O). Let q=(r/g)g~, denote a sequence of i.i.d. 
Bernoulli variables taking the values e , - e  with probability �89 For the 
inverse temperature fl define the Gibbs measures 

1 exp (  fl ~ a~aj+fl ~ q,.ai) (1.3) 
~ N ( ~ ] ) [ ( a i ) i = l " ' " N ]  :=Norm. 2-N I<~i,j<~N l<~i<~N 

in the finite volume 3 The phase diagram of the system is well known (see 
[ SW], [APZ] ). At low temperatures and small e the model is ferromagnetic, 
i.e. there exist two "pure" phases, a ferromagnetic+phase /~+(~/) and 
a -  phase/~ ~(~/). We restrict our interest to this region of the phase diagram. 

(ii) The Hopfield model with finite number of patterns: 

Let I2 be the space of Ising spins as above. Let ~=(~)~.U=I.. . . ,M 
1 denote i.i.d. Bernoulli variables taking the values l, - 1  with probability ~. 

~z= ( ~ ) ~  ~ are the patterns the model is supposed to learn ([Ho]).  For 
/? > 0 define the finite volume Gibbs measures 

1 ( ev vo, ) t"lN(~)[((Ti)i=l,....N] :=Norm. eXp ~-~ ~ ~ ~i-j i j] (1.4) 
l<~i,j<~N l<~v<~M 

Due to our restriction on the number of patterns to remain fixed when 
N T ~ ,  we are deep inside the "region of perfect memory" if fl > 1. This 
means that, for large N, the system is approximately in a mixture of the M 
"Mattis states"/z~(~). The latter is a state, associated to the v-th pattern, 
s.t. the overlap vector  (1/N~N=I~Pai)p=I....,M is centered around +_m*a ~, 
where a v is the vth unity vector in RM. (m*--m*(fl) is the solution of the 
ordinary Curie Weiss Mean Field equation.) For precise statements, see 
e.g. [BGP], [BG1]. For the state of the art in the Hopfield model 
with limuT~ M(N)/N=o~ small and positive we refer to [BG2] where a 
beautiful proof of the validity of the replica symmetric solution is given. 
One reason for treating the Hopfield model here is of course, that it can be 
viewed as an interpolation between a ferromagnet and a spin glass. 

3 As usual they can also be viewed as measures on I2 by tensoring with arbitrary product 
measures for the spins at sites i >  N. 
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For the limiting distribution of the empirical metastates in these 
two models we will prove the following theorems. (For the pathwise 
approximation results and related information, see Theorems l '  and 2'). 
These show that even in these simple models there is some richness in the 
empirical metastate. 

Theorem 1. For all bounded continuous functions F: ~ ( ~ 2 ) ~  
we have the limit in law 

f law + lim 1 F(/t~(~/)) = n~F(p~(rl))+(1-n~)F(Iz~(tl) ) 
NT~176 N n=l 

(1.5) 

where n oo is a random variable, independent of ~/on the r.h.s, distributed 
according to 

2 
P[noo < x] = -  arcsin v /x  (1.6) 

7~ 

Thus, the empirical metastate is supported on the two "extremal" Gibbs 
measures with random weights. 

Let us briefly explain the occurrence of the arcsin-law. It turns out 
that, heuristically, we have the approximate extreme decomposition 

~ + + _ p ~ ( q ) )  a . ~ ( q )  I t N ( r l ) ~ P N ( r l ) l t ~ ( r l ) + ( 1  + (1.7) 

where the weight p+(~/) expressing the random symmetry breaking is a 
function of the random walk N~-~ zN=~ q; of the form 

p~( / / )=  e Cl~)ZN-'q,+e ,.l~)~u=,, ' (1.8) 

with some constant c(fl) which is positive in the low temperature phase. In 
fact, the occurence of zN=I ~/i (which follows from a saddle point analysis) 
is not surprising given that it is proportional to the energy difference 
between the ground state configurations cr i - 1 and ai - - 1 in a volume of 
size N. Now, typically y,N=~ ~/i ~NI/2 moves on a scale increasing with N 
and so, for the empirical metastate, we might even use the approximation 
P~(~/) ~ lzN=~ ~,~0' We write 

n N ( q ) : = ~  l<~n<~N ~/;>0 (1.9) 
i=1 
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for the fraction of times the random walk spends in the upper half plane. 
Then we have, for any continuous function F on ~(I2) (i.e. an observable 
on states), 

1 
--  ~ F(Itn(rl))~nN(rl)F(fl+(rl))+(1--nN(q))F(lt~(rl)) 
N I<~n<~N 

(1.10) 

This explains the form of the r.h.s, of (1.5), using the well known 
probabilistic fact that nN converges in law to an arcsine-distributed variable 
n~ with NT oo. 

Led by Theorem 1 for the CWRFIM one might be tempted to conjec- 
ture that the empirical metastate gives mass only to the Mattis-states (one 
pattern states). However, the analogue of Theorem 1 is more involved. To 
state the theorem let us denote by d the M ( M - 1 ) / 2  dimensional vector 
space of M • M symmetric matrices with vanishing diagonal. Denoting by 
6~ = {(p~)u = 1,..., M} the simplex of M-dimensional probability vectors let us 
define the map p: d -* :T by 

p'(v) 
p"(v) := where pv(v) :=exp(c(fl)(V2) vv) (1.11) 

with the cons tant  c(fl)=flm*/2(1--fl(1--m*)2). Let us denote by 
W,=(W,~V)~<~.~<M a Brownian motion with values in d .  This is just 
obtained by M(M--1)/2 independent one dimensional Brownian motions 
W{ ̀v for/~ < v, and setting W~ ~ := W~ ~ and W, ~ := 0. Then the statement 
analogous to Theorem 1 reads 

Theorem 2. For all bounded continuous functions F: ~'(t2)~-, 
we have the limit in law 

1 F(/zn(~)) ' ~ [ ~  dtF pV /~ ~(~) (1.12) 

where ( W,)o <, < ~ is a M ( M -  1 )/2-dimensional Brownian motion starting 
at the origin, independent of ( on the r.h.s. 

The occurrence of the Brownian motion in Theorem 2 will be 
explained by an invariance principle for the underlying disorder variables; 
the time t is nothing but the rescaled system size. 

Here, in fact, the empirical metastate is richer, in that it is a random 
mixture with support on a// mixtures of Mattis states. Indeed, for each 

fixed t, p( W,/x/~t ) has a probability distribution (which is independent of t) 
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which gives mass to all possible weights in 6: (see Chapter 5). Thus the 
metastate gives weight to a// mixtures of states that are not excluded by the 
spin-flip symmetry (that holds for all realizations) and not only to the one 
pattern states. Note that this behavior is in sharp contrast to the behavior 
in the CWRFIM. As it will be explained in more detail in chapter 5 (see 
the discussion after (5.5)), the occurence of mixtures can already be expec- 
ted from the fact that the energy difference between groundstates for two 
different pattern (where the spins take one pattern, or the global flip of it) 
stays of order unity when N goes to infinity. 

Remark. We see explicitly that, in both cases, the empirical metastate 
Ks(q) does not converge (see Theorems 1', 2') for a fixed realization. Thus, 
having a limit for XN(~/) is only possible when it is viewed as a random 
variable. This is expressed by the fact that the n~ respectively pV(W,/x/~t) 
are random variables with nondegenerate distributions. 

We would like to mention that, apart from the empirical metastate, 
there is a second notion of metastates, whose construction is due to [AW]. 
We will discuss its relation to the former; as we will see, it contains less 
information. It will be obtained from the r.h.s, of (1.5) (respectively (1.12)) 
by integration over n~ (resp. IV,). 

Its precise definition will be given in Chapter 2, where we also state 
some straightforward approximation properties that are valid for lattice 
systems as well as for mean field systems. We describe the role of sets of 
regular realizations of the disorder at a general level here, since dealing 
with such sets is typical for disordered systems. In Chapter 3 we introduce 
disordered mean field models with quadratic interaction. We give 
approximation criteria and describe general features of the behavior 
expected in these models. We also discuss the relation between the condi- 
tioned and the empirical metastate. In Chapter 4 we consider specifically 
the CWRFIM and prove Theorems 1 and l'. In Chapter 5 we consider the 
Hopfield model and prove Theorem 2 and 2'. 

2. NOTATIONS AND GENERALITIES ABOUT METASTATES 

The following considerations are true for general random spin systems 
with finite local spin space S. We assume the state space is a countable 
product of S over the lattice points, in practice /2 = S z" or f2 = S ~. Spin 
variables will be denoted by tr, their projections on finite volumes A by aA; 
when necessary to distinguish between spin variables and their values, we 
denote the latter by 09. 

Some topological remarks are in order (see also [AW] appendix, 
[NS3 ], [N] ,  [ Se])./2 is equipped with the product topology. We denote 
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the space of probability measures on s (the set of states) by ~(D).  It is 
equipped with the weak topology which coincides with the local topology 
in our case; that is, convergence of measures is checked on ft~nctions that 
depend only on finitely many spins. It is metrizable and to be explicit we 
choose the metric 

k = I r ~ QAk 

where Ak is an enumeration of all finite subsets of lattice points (See 
[Geo] ,  p. 60). Given two sequences /tu and/t~v, l imut~  d(H~v,/Z~v)=0 is 
thus equivalent with the condition limNT ~ [/tN[a, =CO,]--kt~V[aA = COA]I 
= 0 for all finite subsets of sites A, for all co, e D A . 

We denote the set of probability measures on ~(D) (the set of 
metastates) by ~(~(g2)). In the same spirit, it will be equipped with its 
weak topology, inherited from the topology on ~(s (as in [AW]).  Thus 
convergence is checked on bounded continuous functions on the states, 
which means more concretely that convergence needs to be checked on 
functions of the type 

F(u) = F ( f l ( f l )  . . . . .  ~(ft)) (2.2) 

where F: ~ l ~  R is a polynomial, l =  1, 2, ... andf~ ..... f t  are local functions 
on D. The topology can be metrized with the aid of such functions. In the 
Ising case one may restrict oneself to functions f j  of the form l-[i~ z ai with 
a finite set of lattice points / .  Both spaces ~(D),  ~(N(t'2)) are then com- 
pact Polish (i.e. complete, separable, metric) spaces. All spaces we consider 
carry automatically the associated Borel g-algebras generated by the open 
sets. 

Note that, for fixed ~/, the empirical metastate KN(~/), as defined in 
(1.2) will always possess limit points, due to the compactness of ~ (~(D)) .  
We remark that the definition of the empirical metastate in (1.2) depends 
a p r i o r i  (and in reality!) on the sequence of volumes A, one is considering. 
In mean field models there is the natural choice of volumes A, = { 1,..., n} 
that we will stick to. In generalization of the definition (1.2) one could even 
want to study the objects ~ pN(dA)t~ .  A with some sequence of measures p~ 
on the set of finite subsets of the lattice, s.t. p x ( { A } ) ~ O  for all finite A 
with N T ~ .  We don't treat this general case here. 

We will generically denote the probability space of the random 
variables ~/describing the quenched disorder by ( ~ , ~ ,  P), and expectation 
w.r.t P will be denoted by ~:. We assume that ~ is a product of a Polish 
space over the lattice points. Jg, too, is equipped with the product 
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topology. We can now consider the skew space ~ xO (see [Le],  [Se]), 
equipped with the product topology. 

There is another notion of metastate, introduced by [AWl ,  that we 
will refer to as the conditioned metastate. For its introduction it will be 
necessary to consider, one level higher, the space Jg x ~(O),  equipped with 
the product topology. Assume that we are given a measurable sequence of 
random states pu(tl). We will focus on the random elements 6,Nt, ~ in 
~ (~ (O ) )  and view these as kernels from W to ~(12). Then we consider 
the associated probability measures on the space ) f f x ~ ( O ) ,  given by 
~_[G(BN(tl), q)], for a bounded continuous function G on Jig x ~ (~) .  

Assume now, that the sequence pN(tl) is such that, for any bounded 
continuous G, the limits 

l im [E[G(/.~N(/']) ,/ '])] =: f K(d~l, d~]) G(/.I, ~) 
N]oo 

(2.3) 

exist and define a probability measure K e ~ ( ~ ( g 2 ) x J f ) .  Then, the 
conditioned metastate gO1)(dP) will be the regular conditional probability 
of K given t/. It is thus the measurable map g: J f - -*~(~( t2) )  s.t. 

K(dp, dtl) G(p, tl) = E[ g(tl)(dp) G(p, t/)]. Note that the conditional prob- 
ability is well defined since ~ is Polish. 

When dealing with random systems one usually has to exclude excep- 
tional sets of the disorder from the analysis. These exceptional sets, which 
may depend on the systems size, should be small enough to be ignored for 
most purposes. As we will see in our concrete examples this question has 
to be handled with care; therefore we would like to state an approximation 
lemma, which shows how exceptional sets of realizations affect the above 
definitions. 

Let us assume that we are given two random sequences pN(t/), p~V(t/) 
of states that become "close" for most t/. We will consider sequences of 
"good" sets of realizations ~Vf(N)c ~f; an important role will then be 
played by the approximation for all t / in  the set _~ :-- lim infnT ~ ~'~(N) = 
{r/�9 Jg, 3N0: t / �9  ~r VN~> No}. This will serve as a relaxation in place 
of just saying that convergence takes place for r/in a full measure set. Then 
we have 

I . e m m a  1. Assume that there exist subsets OVfNCJf s.t., for all 
realizations ~/�9 lim infsT ~ oVf(N) we have limu, ~ d(PN(~/), P~v(~/)) = 0. 
Then 

(i) For r/e lim infN, 09 Jr(N) the sets of weak cluster points coincide 

r N(~/), n = 1, 2,...) = ~ ( / ~ v ( q ) ,  n = 1, 2,...) (2.4) 
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(ii) For all ~ /ea f '  := {r/, limNt~ 1/N~Ut 1,~.~.~(.),=0} we have 

lim (~cu(t/)(F) --X~v(t/)(F)) = 0 (2.5) 
N1"ov 

for all bounded continuous F on ~(f2). 

(iii) Assume that limNT~ P [ a f ( N ) ]  = 1. Then, for any bounded 
continuous function G: ~(O)  x a f  ~ 

l im([[G(pN(~),  ~)]--~[G(p%(q),  ~ ) ] ) = 0  
N ~  

(2.6) 

Proos (i) is obvious. To prove (ii), define 

1 
SN:=-~ Z lq~,~'l.) (2.7) 

l ~ n ~ N  

For any bounded continuous function p ~-* F(#) we have 

1 
- -  E (F (# . (~ ) ) -F (p ' , , (~ ) ) )  
N l ~ n ~ N  

1 
= - -  E (F( / . In( t l ) ) -F(~tn( t l ) ) )  Irl~3q~(n)-~-R N (2.8) 

N 1 <~n<~N 

According to its definition we have on a f '  that [RN] ~ IIFI[ o-~SN ~ O. Since 
the first term is a Cesaro sum it suffices to show that 

(F(#.(r / ) )  -- F(#;,(r/))) I ~ , . ( . ) ~  0 (2.9) 

with n T oo. But notice that a continuous F is in fact already uniformly 
continuous, due to the compactness of ~((2). Therefore (2.9) follows 
directly from the assumption, for both cases that t/ is an element of 
lim infNr o~ af(N) or that it is not. 

To prove (iii), we split off the exceptional set afC(N) to write the l.h.s. 
of (2.6) as 

:~[(G(#N(~) , ~)--G(#N(~), ~))Iq~,~(N)]+R N (2.10) 

where IRu[~<2 IJGII~Paf"(N)--*O. Now, for fixed ~, # ~ G ( p , r / )  is a 
uniformly continuous function in # (due to compactness). Therefor the 
convergence for fixed r/ of the expression under the expectation follows 
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directly from the assumption. Using dominated convergence this proves the 
claim. | 

Remark. The set ~ '  is potentially (and sometimes in reality) a bit 
bigger than the set lim infN~ ~ ~ ( N ) .  Our discussion of the CWRFIM will 
provide an example where, for a natural choice of sets gg(N), the first is 
a full measure set but not the second. Of course, if ~ ( N )  can be taken as 
a full measure set which is independent of N, we have ~g(N)= ~r and the 
convergence in (ii) takes place a.s. 

3. M E A N  FIELD M O D E L S  W I T H  Q U A D R A T I C  I N T E R A C T I O N  

In this chapter we discuss the models of the above class. We fix 
approximation criteria (see propositions 1, 2) that allow for the computa- 
tion of the metastates in terms of the relative weights the "Hubbard- 
Stratonovich" measure puts on small balls around its concentration set. 
The models we will consider are of the following type. (See also [BG2],  
Chapter 2). 

The spins t T = ( a i ) i = l , 2 , . . . ~ = S  N have an apriori distribution 
according to a product measure 

N 

] " /0 (~) [0 "  = ('01 = 1--I ]'lOi(?]i)[~i=('Oi] ( 3 . 1 )  

i = l  

Here we allow the measures/t~ to depend on a random variable ~/i, 
i ~ N; this enables us to include random field type models. These "random 
fields" r/~ shall be sitewise i.i.d. Assume that we are given a bounded 
continuous map 

(~rl, r/i)~-+ m(al ,  ql) (3.2) 

taking values in ~ / .  Then the order parameter A N is defined by the 
empirical average 

1 N 

rhN(a, q ) : = ~  ~ m(ai, rh) (3.3) 
i = l  

We consider the Curie Weiss Hamiltonian given by the square of the 
2-Norm of the order parameter 

N _ 
EN(a, r/) := --~mN(a, r/)2-- = N ~ II~Yv(a, ~)112 (3.4) 

2 v = l  
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The associated finite vo lume Gibbs  measures  are then 

exp( flN(r/)Ea = r :=  --flEN(C~176 (3.5) 
Norm. 

We write 

~N(t])[ " ] :=flN[rnN( O', Y]) ~ "] (3.6) 

for the associated image measures  on the order  parameter .  Examples  for 
these models  are 

( a )The  ord inary  Curie Weiss Ising ferromagnet :  o i ~ { - 1, 1 }, 
re(a,,  t / t ) = a  1, ~li(qi)[ai = + 1 ]  =�89 for all i. The choice of  r a n d o m  
a priori measures  according to , a i ( r h ) [ a  i = --b 1 ] = e-+/%/2 cosh(flr/i) 
gives our  first example  f rom the introduct ion,  the C W R F I M .  

(b)The Curie Weiss q-state Pot ts  model:  a i ~ { 1 ..... q}, (mP(al, tl 1))p = 1,..., q 
=(lat=p)p=t,..., q. 

( c )The  Hopfield model:  a i ~ { - 1, 1} with symmetr ic  Bernoulli  a priori 
measures.  For  t radi t ional  reasons we call the r a n d o m  variables in this 
case ~ instead of  t/. (~ ' ) i=  ,, 2, ...:, = l ..... M = (~i)~= l, 2 .... are i.i.d. (for dif- 

' The  order  pa rame te r  is defined by ferent i,/z) with P [ ~ =  ___1] = ~ .  
m(al ,  ~l) = a ,~ l  ~ { 1, - 1 } M. The empirical  mean  rhu(a, ~) is then 
called the overlap vector. 

O u r  restriction to quadra t ic  Hami l ton ians  is convenient  because it 
makes  it possible to use the well known trick of  the Hubba rd -S t r a tonov i ch  
t ransformat ion.  Let us recall it here for convenience of  the reader  and  
to fix notat ions:  One  introduces an auxil iary M-dimens iona l  Gauss ian  
integral to write for fixed 09 = (09~ . . . .  (,ON) I~ ~e'~{ I,..., N} 

f R M d m e x p (  f lNm~2+flNm'rhN(~ 

fl N(F])[ O" = fO ] -- Norm.' 

_ 1 dm exp - f i N  
Norm.' M f iN 

• exp( f lNm.  F~lN(f.O , 0 ) )  Ol " r a  (1)] 
12o( tl ~ i f l - - - ~ - ~ y m  . ~N(  a,, rl ) ) I.t u t  rl )L = 

(3.7) 
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Now, for fixed m, the second line of the r.h.s, constitutes a probability 
measure for the variable a. The variable m is integrated with respect to the 
measure that can be read off from the first line of the r.h.s. 

Thus one has the following "factorization formula" that will be the 
starting point for our analysis 

]. . , tN(r/)[ O" = 0 ) ]  = f~M fiN(r/)(dm) It~ r/)[a = Co] (3.8) 

Here p ~  is a product measure over independent spins 
obtained by "tilting with the external field" t; that is 

N 

p~ r/)[a = co] = YI/to( t, rl,)[a,=c~ (3.9) 
i = 1  

where 

poi( t, r/ i)[ a i = coi] _ exp(fit, m( co i, r/i) ) po( q i)E a i = O)i] 
exp(fiL( t, r/ ,) ) 

(3.10) 

with the associated logarithmic moment generating function 

L(t, r/i)= ~ log f l t~ m(ai,  rli)) (3.11) 

We will write p~  r/) for the infinite product measure. The "Hubbard- 
Stratonovich measures" fiN(r~) are given by 

exp(--fiNflgN(m , ~ ) ) dm 
fiN(r/)(dm) : =  JR dm' exp(--fiN~N(m',  rl)) (3.12) 

with the function 

m 2 1 
r N ~ L(m,r/,) (3.13) 

I <~i<~N 

(dm means of course integration w.r.t. Lebesgue measure.) Note that fiN(r~) 
is nothing but the convolution of fiu(~l) with a M-dimensional Gaussian 
Normal variable with covariance matrix a21 = (l/f iN) 1. 

It is essential about mean field models that the measures fiN(r/) (and 
the related fiXO1)) have exponential concentration properties when NT oo. 
The following results, reducing the question of the structure of the phase 

822/88/5-6-18 
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diagram to averaged quantities, are known applications of large deviation 
techniques ([DS],  [DZ] ,  [Eli) .  Define 

L * ( m )  := inf(t,  m - ~_L(t, q~ )) (3.14) 
l 

and 

m 2 /m,2 ) 
I(m) := T + L * ( m ) -  in, f ~ -  + L*(m') (3.15) 

Then there exists a full measure set of r/"s s.t. (a) the measures fiN(q) obey 
a large deviation principle with the deterministic rate function I(m). (b) 
Any weak limit point of PN(~/) is of the form 

I~,p(dm) p~  r/) (3.16) 

where 

J4' := {m, I(m) = 0} = {m, IE[C~N(m, i"/)] = m i n  E[C~N(m', 1/)]} (3.17) 
m '  

is the concentration set of the measure fiN(q)" For a proof (also of the right 
inequality in (3.17)) see Theorem 5 in [Co]  (for the case of nonrandom 
a priori measures). (3.16) shows that the role of pure infinite volume states 
is played by the product measures/~~ r/) for m in the set J/g. ~ '  should 
be thought of the set of values m the order parameters takes in the different 
"pure phases. ''4 Now, for our study, we have to describe in more precision 
the finite volume version of (3.16) in which the random competition among 
the elements in the set dg manifests itself. For that purpose we need the 
relative weights that are put by the measure PN (the finite volume version 
of the measure p(dm) in (3.16)) close to an meM.  Thus we have to go 
beyond the large deviations on the volume order; we have to look at a 
scale where the random fluctuations become important. 

Let us assume that ~ / c  ~M is a finite set. In fact, we want to replace 
(3.16) by 

I~N(q) "~ ~, PNO1)I~O( m, ~1) (3.18) 
m ~ r 

In view of the factorization formula (3.8) we look at the probability vector 
p~c(r/) :=(pN(V/)) ..... ~ as an approximation of the Hubbard-Stratonovich 

4 Typically, by adding "magnetic field terms" to the Hamiltonian, one can select one of these 
to survive as a limit point of the modified ,uN(r/). 
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measure fiN(q)" Since this approximation shall be sufficient for the 
metastates, we are looking for natural conditions that imply the assump- 
tion of Lemma 1. Denote by Bp(m) the Euclidian ball centered at m with 
radius p. Let us thus make the following 

Definit ion 1. Assume that we are given subsets af~ c ~ .  We 
use the abbreviation _aft :-- lim infNT oo aft(N). We say that fiN(q) becomes 
close to the probability vector (PN(q))m~.g along the regular sets af~ N) (in 
short: they have the property CR(pN)) if, for all q e _aft, for all m e ~ ' ,  

l i m  (fiN(q)[BpN(m)] - -  p~(q)) = 0 (3.19) 
N T m  

for a decreasing sequence of radii PN ~ O. If (3.19) is true for all sufficiently 
small p (independent of N), we say that they have the property CR(p). 

The reason for this definition is that we have 

L e m m a  2. Assume property CR(pN) and define /~v(q):= 
m 0 m ~,,~r Then, for all q e _ ~  we have limuT~d(llu(q), 

~ v ( q ) )  = 0.  

,- ) Remark. From the fact that (PN(q)me.If is a probability vector 
follows in particular that, for all q ~ _~. 

lira fiN(q) Bp(m = 0 (3.20) 
N' f  orj m 

which is just the usual definition of J / b e i n g  the cluster set of fiN(q) (see 
[LPS]) .  

Remark. Note that CR(pN) for some unspecified PN is implied by 
CR(p). (Put aNK :=fiN(q)[Bpx(m)]- P~v(q), for some decreasing sequence 
PK ~0, and use the elementary fact: For each double sequence auk s.t. 
limNToo aNK=O for fixed K one may find a subsequence KN T oO s.t. 
limN, 00 aNKN = 0.) 

Remark. The property CR(p) is equivalent to the property CR(p), 
by which we understand, that in the above definition the measures fiN(q) 
are replaced with the measures on the order parameter, fiN(q)" TO see this, 
note that from their relation as convolutions follows that, for m e J / ,  

fiN(q)[Bp(m)] <'-.fiN(q)[B2p(m)]-FP I fiN > P ] (3.21) 
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with a standard normal variable G. From that we have, for r/~ CL((. 

lim (pN(q)[Bp(m)] --P~vO1)) <~ lim (fiN(q)[B2,(m)] --P~O1)) (3.22) 
NT~ NI"~ 

Similarly we can obtain the lower bound 

lim pu(r/)[B,(m)] - p ~ ( q ) )  >/ lim (fiN(~l)[B,/2(m)] --P~O1)) (3.23) 
NToo NTQo 

which proves the claim. I 

We come to the 

Proof of Lemma 2. Take q E _o_~. We only have to check convergence 
on a local event of the form A : =  { a  a = ogA} with fixed o9 A. Then, using the 
factorization formula (3.8), we have 

au(,l)EA]- ~ " o [ PuO1) p~(m, q)[A] 
m~ ,4r I 

[( )] -s< p~(,7) U ~,,,,(m) 
r r l  E ,,,r 

+ Z f ~(, t)(a,~)a~ m o - p  x(tl) p ~(m, t/)[A] 
m~o~l JBpN(m) 

(3.24) 

where the first term on the r.h.s, vanishes under the N-limit (see first 
remark). We pick one m in the sum and write 

fs. fiu(q)(d~) p~ r/)[A ] --pTv(r/)p~ r/)[A ] 
N (m) 

<~ f fiN(rl)(d#l ) o ~ I~ ~(m, q)[A ] - p~  ~/)[A ]1 
N (m) 

o m + IfiN(rl)[Bpu(m)] --PTv(q)l/~( , q)[A] (3.25) 

The first term goes to zero with ,o N ,L O, due to the continuity of the function 

rh ~ p~ q)EA] (3.26) 

(In fact, it is ~oo everywhere; all derivatives exist for all rh ~ ~M, due to the 
assumed boundedness of the order parameter.) The second term goes to 
zero according to the assumption (3.19). | 
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Putting the pieces from the Lemmata 1 and 2 together, we 
immediately obtain the following approximation result that we fix as 

Proposi t ion 1. Suppose that we are given a quadratic random 
mean field model of the above type whose Hubbard-Stratonovich measures 
PN(~/) obey the approximation property CR(pN) with probability vector 
(P~(r]))m~.#" Then 

(i) For all ~/~ _~ we have for the set of weak cluster points in ~(/2) 

c~( / t  N(q), N = 1, 2,...)= cg~ ( ~  m 0 ) pN(q)It~(m,~l),N=l,2 .... (3.27) 
m . ~ '  

(ii) Define the metastate 

1 
6 ,. 0 m (3.28) ~U(q) :=-N Eme.~pN(q)it~( ,q) 

n = l  

Then, for all t/~ 5/g' = {~/, limNr~ 1/NF.N=] 1.~.,~(.), = O} we have 

NToo 

for all bounded continuous F on ~(t2). 

(iii) Assume that l imNTooP[~(N) ]= l .  Then, for any bounded 
continuous function G: ~(t2) x ~ ~ R 

Remark. Again a word of care about the difference of ~ and ~ ' :  
The CWRFIM will give an example where, due to this difference, the set 
of cluster points becomes a.s. larger than the set of measures the metastate 
will be asymptotically supported by (See Chapter 4, Theorem 1'). 

Let us exploit another piece of information that we expect to hold in 
these models. Note that, for fixed volume, the weights in the approximate 
extremal decomposition are symmetric functions w.r.t to permutation of 
the sites in this volume of the underlying random variables. (Take as a 
simple example the weight (1.8) for the CWRFIM where only the sum of 
random fields in the finite volume enters.) Thus, for typical fixed realiza- 
tions in the infinite volume, the weights should behave asymptotically (as 
a function of N, for large N) in the same way if the realizations of random 
variables in a fixed finite volume are changed. A precise version of this 
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property is formulated below in (3.31). It will be easy to verify in our 
examples, but we refrain from a general investigation here. So, let us take 
this property as an assumption and look for the consequence on the 
distribution of XN(q). But then, due to the fact that we check convergence 
of XN(t?)(F) with local F's, the weights should become asymptotically 
independent from the random variables the function F feels if N gets large. 

To state this phenomenon precisely, let us use the notation I P -  P'I for 
two weights p, p', viewed as elements in R M, for any norm on R M. Due to 
the finiteness of M, the choice of the norm doesn't matter; if we allowed M 
to increase with N, this would become an important point. Then we have 
for the distribution of the empirical and for the conditioned metastate 

P r o p o s i t i o n  2. Suppose, in addition to the assumption of Proposi- 
tion 1, that for all v/~ _~, for all finite V c  ~, 

lim sup HpN(v/) --pN(V] +?]V)II =0 (3.31) 
N T orj V/V 

where ~ v is a local perturbation in the finite volume V s.t. v/v + F/v lies in 
the support of the distribution P. Let v/' denote a copy of disorder 
variables, independent ofq. 

(i) If P [~ r  = 1, we have for the empirical metastate 

lim f KN(~)(d/I) F(/~) 
N T ~  

law lira 1 ~ =  F (  ~ m , ) )  
NT o0 N P" ( q ) / l ~  q 

n = l  \ m ~ J r  

(3.32) 

for all bounded continuous F on ~'(O), whenever the limit on the r.h.s. 
exists. 

(ii) If limNT~ P [ ~ ( N ) ]  = 1, we have for the conditioned metastate 

f~(q)(d~) F(/~)= lim f P(dvf)F( ~ p~v(rf)u~ rl)) (3.33) 
N T o* m ~ J.r 

for all bounded continuous F on ~(I2), whenever the limit on the r.h.s. 
exists. 

Proof. We may restrict to local functions F of the form (2.2). To 
prove (i) it suffices to show that, given F, there exist versions V/l, v/z, of 
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disorder variables, mutually independent, s.t. for all q e _Jef we have the 
pointwise limit 

mim( (  m 0 )) Pn(~l)lto~(m, ~1) p~ (~/1)/~~ r/2 ) = 0  (3.34) 
nT~176 m~Jt '  \ rn e..# 

But note that such a function can be written in the form 

= : / ~ ( p n ( r / ) ,  ~/j) ( 3 . 3 5 )  

Due to the p~ q) being product measures with local dependence on the 
randomness, the ~/-dependence of F other than through Pn(q) itself remains 
local; the finite support J of qj depends of course on the special choice of 
the functions fj. 

Now, define the variable ~/1 to coincide with ~/on jc and to coincide 
with an independent copy on J. Define q2 to coincide with ~/on J and to 
coincide with an independent copy on jc. Since P is a uniformly continuous 
function on the compact space of probability vectors (3.34) follows from 
the assumption (3.31). 

The same type of argument proves (ii). | 

Let us comment on the relations between the various objects we have 
obtained and the picture that arises from the above propositions, assuming 
the approximation properties (3.19) and (3.31). The full information on the 
level of metastates is contained in the object ffN(~/) (3.28). It is supported 
on the infinite volume Gibbs states and contains the asymptotic form of 
the weights in the extremal decomposition. The weights will depend on 
the overall information of the random variables; therefore they will be 
asymptotically independent from the variables in a fixed finite volume. But, 
a local observable feels the underlying randomness only locally. Thus, for 
the limit of the distribution of the empirical metastate, the weights can be 
replaced with an independent copy, giving rise to an "additional random- 
ness." The limiting distribution of fiN(q) contains information about the 
asymptotic behavior along a path NI----~[.tN(tl). On the other hand, the con- 
ditioned metastate contains no path properties at all: The weights, replaced 
with independent copies with the same distribution are integrated out. In 
that case, the whole size dependence is averaged "over infinity." Its inter- 
pretation, suggested by the asymptotic independence, is then: Having no 
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particular knowledge of the given realization of the disorder globally, the 
conditioned metastate gives the weights with one expects to find a specific 
mixture of states. This same metastate could be constructed by "thinning 
out" the sequence of volumes which occur in the empirical metastate in a 
nonrandom way, as has been shown for lattice systems in [N] .  

4. THE CURIE-WEISS R A N D O M  FIELD ISING MODEL IN THE 
2 PHASE REGION 

In this chapter we prove Theorem 1 for our first example, the 
CWRFIM,  and the fixed realization results of Theorem l'. By this we 
provide an easy example of the mean field picture of the last chapter. We 
will also see in this example that the set of fixed realization cluster points 
can be strictly larger, almost surely, than the support of all the metastates. 

In the C W R F I M  the logarithmic moment generating function of the 
order parameter (3.11 ) becomes 

L(t, ~/,.) = ~ log cosh(fl(t + q;)) (4.1) 

Due to our assumption that ~/i = __e takes only two values it can be written 
in the form 

L(t, ~h) = L +(t) + L _ ( t )  rl~ (4.2) 

where 

1 
L +(t) := ~ (log cosh(fl(t + e)) + log cosh(fl(t - g ) ) )  

(4.3) 
1 

L_( t )  := 2~ (log cosh(fl(t + e)) - log cosh(fl(t - e))) 

Thus the function ~N(m, ~1) becomes 

m 2 WN (4.4) 
~N(m, r] )=-~--L+(m)-  L_(m) N 

where the dependence on the randomness is only through the random walk 

WN:= ~ ~// (4.5) 
I <~i<~N ~ 
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This will make the analysis particularly easy, in that it reduces questions 
on the metastates to questions about the walk W p  

As said before in Chapter 3, the structure of the phase diagram is 
determined by the averaged function r 1 7 6  which has 
been analyzed in detail (see [ SW ], [ APZ]):  For "large magnetic fields" 

> l, it has only one global quadratic minimum at m = 0. For 0 ~< e ~ �89 
there exists a critical inverse temperature/?~(e) s.t. for fl > tic(e) the system 
has two symmetric global quadratic minima at positions _+m* - _+rn*(/?, e); 
for fl<flc(e) the system has one global quadratic minimum at m =0.  We 
assume for the rest of this chapter that we are in this two phase region. 5 

Recall the notations from the introduction (1.7)-(1.9). Define 
p~(q)  :=p~ q). Then, in fact, (1.7) follows if we just approximate 
the integral over m in the definition of fiN(~l) by two delta functions at 
+m* with weights determined by the values of CN( +m*,  t/). This gives the 
value of the constant c(fl)--flL_(m*).  Denote, following the notation of 
the last chapter, 

/~N(Y]) : =  nN(?]) (~ U+(rl) "4- ( 1 - nN(r])  ) (~ ~-(q) (4.6) 

Then the precise results are given by Theorem 1 and 

T h e o r e m  1'. 

(i) For all t/ in a full measure set, the set of weak cluster points 
equals 

C~3~{pN(t/), N =  1, 2,..} 

1 1 + e x p ( - 2 c ( f l )  z), = q p + ( r / ) + ( 1 - q ) , u - ( r / ) ,  q 

(4.7) 

(ii) For all ~/ in a full measure set, for any continuous function 
F: ~(f2)  ~ N the empirical metastate is approximated by 

NToc 

s At the phase transition line itself there exist two regions: For small e there is a unique global 
quartic minimum at m =0,  as for the usual CW ferromagnet; for large ~ there are three 
global quadratic minima. These two line segments are separated by a tricritical point, where 
there is one global sixth order minimum. 
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(iii) For all ~/ in a full measure set the conditioned metastate exists 
and equals 

/~ (~)  = l 1 (4.9) 

Remark. Note explicitly, that the conditioned metastate contains 
only the equal weight distribution on { - �89  �89 which is obtained by 
averaging over the variable n+ of Theorem 1. The information it contains 
is thus that, for large N, the system will be in one of the pure phases, which 
one changes randomly for different volumes. 

The set of cluster points has also been found by [APZ] .  We would 
like to point our here that, a.s., it is strictly bigger than the support of the 
metastates. The special structure is of course due to the discrete nature of 
the distribution of the random fields; if their distribution were continuous, 
we would expect to get in fact all mixtures. 

The proof is of course an application of the general propositions 1 and 
2 plus the model dependent estimates of the Laplace asymptotics for the 
measure p~(~/). To this end we will now introduce two sorts of "regular 
sets" of realizations of the disorder. One is 

~ ( N )  := {r/: I WN(q)[ ~<N (' +a)/z} (4.10) 

with some 0 < & < �89 We consider balls around the minima _ m* with radii 

PN := N-1/4 + ~/2 (4.11 ) 

Then an estimation of the occurring integrals gives 

Proposit ion 3. There exists a nonrandom No = No( f l ,  e)  s.t. for all 
N~> N O for all q ~ ~ ( N )  

flN[Bpu(m* ) U BeN ( - -m*)] /> 1 --exp( --const(fl, e) N 1/2+~) (4.12) 

and 

l ftNEBpu(m,)] WN ogfiN[BpN (-m*)] --2C(fl) ~< Const(fl, e) N 1/4+3/2 (4.13) 

Remark. The proposition shows that outside exceptional sets one has 
a fairly explicit control about the cluster properties of fiN(q), including 
the relative weights. We only remark that it is easy to see that the same 
bounds hold for the measure fiN (with possibly worse values for const(fl, e) 
and No). 
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We will postpone the proof to the end of this chapter. 
Let us also introduce the smaller regular sets Jgz(N) by imposing as a 

second condition that the I WN(q)I be not too small: 

~2(N) := {r/: I WN(r/)I < N (1 +6)/2 and I WN(q)I ~ N s} (4.14) 

for 0 < c~< 1. Denote, following our usual notation, 

1,2 := lim -- l~.yei,2~),.=0 
(Nt~  N ~=l 

_o_o_~ m,2 := lim inf A'~m(N ) 
Nl"oo 

(4.15) 

Then we have 

Lemma 3. 

(i) P [ J r  P[_~_2]=0 

(ii) P [ ~ ' I ]  = F [ - ~ ]  = 1. 

Proof. To prove the first claim in (i) we must show that 

1 
SN.-- N ~, lwo~B ~ 0  (4.16) 

l<~n<~N 

a.s. where B , =  {xE R: Ix[ >>-N 1~+~)/2 or Ix[ ~<NS}. SN is nothing but the 
mean time of the walk spent in the "bad regions" B,. 

Note that S, ~< 2S2~+, for 2 g ~< n ~< 2 k+ 1. Therefor it suffices to show 
that $2, ~ 0 a.s. with k 1' oo. By Borel-Cantelli it suffices to show that, for 
any (rational) e, 

• P [ S 2 k > e ]  < o o  (4.17) 
k = l  

But this follows simply from the Chebycheff inequality since 

E S  N 1 C o n s t  N -  1/2 + 
P [ S N > C ] ~  = - -  ~" F [ W ,  eB,]<~ (4.18) 

e eN  e |<<.n<~N 

where we have used that, by standard estimates, P[Wn~Bn]<<. 
Const( N -  1/2 + 7, + e . . . . .  t u~). 

The second claim in (i) follows from the recurrence of the random 
walk. (ii) follows from the law of iterated logarithm. 



1280 KOlske 

(i) shows that we really need to distinguish between the sets jig~ 
and -~2. With these preparations we come to the 

Proof o f  Theorem 1 nod 1'. It is easy to check that from the 
estimates in proposition 3 follows property CR(pN) along the sets ~ ( N )  
with the weights defined by (1.8). To show Theorem l'(i), we note that it 
follows from proposition l(ii) that the cluster points are described in terms 
of the cluster points of the weights (1.8), for all r/in the full measure set -~t. 
But, due to the recurrence of the walk, these are of the form as in written 
in (4.7), a.s. 

To prove the rest of the statements, we use the different, "trivial" 
weights 

p~*(~/) = I wN>o 
(4.19) 

pum*(q) = 1WN<~O 

For Theorem l'(ii), note that from proposition 3 also follows property 
CR(pN) along the smaller sets ovg2(N) for the weights (4.19). This is a simple 
consequence of the imposed minimum size of IWNI. Thus, Theorem l'(ii) 
follows from proposition l(ii) with the full measure set ~ .  

To prove Theorem l'(iii) and Theorem 1 note that we have for ~/~ -~2, 
because of the minimum size of ] WN[, 

lim sup ( I ~ _ ~ , > o - -  l~u=,~,+y,~V0,>0) = 0  (4.20) 
N T ~  qw 

Note further, that l imur  o~ P [ J~z (N) ]  = 1 (as has been seen in the proof of 
Lemma 3). Thus, Theorem l'(iii) follows from proposition 2(ii). 

To obtain Theorem 1, remark that, according to proposition 2(i), the 
distributional limit is given by the expression 

lim 1 ~ F(p,(~/)) '~ l i m ( n u F ( l t + ( q ) ) + ( 1 - - n u ) F ( p ~ ( q ) ) )  (4.21) 
NT~ N n=l NT~, 

where now n N are random variables with distribution as in (1.9), but inde- 
pendent of ~/. Now, it is a well known result from elementary fluctuation 
theory (see e.g. [Fe ] )  that the n N converge in distribution to a variable n~ 
which is distributed according to the arcsin-law (1.6). (And not to the equi- 
distribution on {�89 -�89 This concludes the proof. 

Let us finally give the proof of Proposition 3. The type of estimates 
used here are standard; we apply parts of what was used in [ BG1 ] in a far 
more complicated situation. However, we include these computations here 
since they are prototypical for random mean field models. 
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Thus, let m * >  0 be the largest solution of the mean field equation 
m = L + ( m ) .  We define R p : = ( B p ( m * ) w B p ( - m * ) )  c. We will have to 
estimate the corresponding integrals 

I+ := ~8~l +_m*) dm exp( -- flN( Clk N(m ) - -  tilS~ 

JP : :  fR,, dm exp( -- f lN(~N(m ) - -  ~~ 

(4.22) 

where we have dropped the ~/in our notation. To prove the proposition we 
show that there exist No=No(fl ,  e) and const(fl, e )>0  s.t. for all N>~No 
and for all q e ~ut~(N) 

Ji~ u <<. exp( - const(fl, ~) N 1/2 + ~) (4.23) 

and 

i -+ ~ exp( -T-2flL (m*) WN) ~ 1 - const(fl, e) N 1/4+6/2 (4.24) 

Before we start, we remark for later use that the higher derivatives of L+ 
vanish at infinity: 

lim = 0, k t> 2 
ImlToo 

lira --0, k~> 1 
iToo ~ 

(4.25) 

and are therefore uniformly bounded. We write m =  _+m* +v  and treat 
the two cases _+ at the same time. Then we have for Ivl ~<p, using the 
symmetry properties of the functions and of their derivatives, 

~N( _+m* + v) -- q~~ _+ WN L N (m*) 

-• WNL" ( - m *  + 0'v) v2 (4.26) _ qs~ * + Or) v2 _ L' (m*) v - - -  
2 N 2 
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with some 0~<0, 0'~<1. Thus, on Ivl ~<p, 

W N b + 2 
~x( +m* + V) -- q~~ +_ - ~ -  L _ ( m * )  <~ -~-  v --  zv  (4.27) 

with 

WN t , 
z : = - - ~ - L  ( m  ) (4.28) 

and 

b+ :=b+(p) :=  sup ~~ - - ~  sup IL" (m*+v)l (4.29) 
v, l v l ~ p  v. l v l ~ p  

Similarly we have 

WN , ~ b l ) 2  
�9 x ( + + _ m * + v ) - - ~ ~  ) - - z v  (4.30) 

with 

b _ : = b _ ( p ) : =  inf q ~ ~  sup I L " ( m * + v ) l  (4.31) 
v, Ivl ~<P / u  v, Ivl ~<p 

Lemma 4. Denote P(x)=P[G>~x] for a standard Normal G. If 
aE [--7, 7], 7 > 0  

e -  x2/2 + "x d x  I~,:1~>~ ,v /~  = e a2~2( P(  7 - a) + P( - 7 - a ) ) <~ e - r2/2 + ar + e r2/2 "~ 

(4.32) 

P r o o s  From the well known estimate P ( x ) < ~ e x p ( - x 2 / 2 ) .  II 

This gives, for p >/4 I z l /b+,  

flvl>~p e -flN((h+/2)v2 ZV) dv <~2 2fl~b + e--#N((b+/2)p2--1zlP) 

,433, 
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With 

2~ 
f~ e-/~N~b§ y-zv) dv= fl~b+exp(Z2flN)\2b+ J 

we obtain from this 

I + >~ exp(+i lL_(m*)  WN) 2re exp \ 2b+ J - 2  exp 

For the upper bound we simply write 

(4.34) 

(4.35) 

11 + ~<exp( +_ilL (m*) WN) fR e--PUt'b-/Z)~2 ~) dv 

27~ 
=exp( +_ilL (m*) WN) ~/-~--_ exp \ 2bfZ2flN'~J (4.36) 

Next we estimate the integral over the outer region. We use the following 
rough estimate. 

Lemma 5. For each e, fl in the two phase region there exists a 
constant ~(fl, e) s.t. for all v ~> - m *  

qO~ * + v) -- r176 i> ~(fl, e) v 2 

sup [L_(m)l =: c2(fl, e) < oo 
m~R 

(4.37) 

Proof. The first claim states that q)o is bounded below by a parabola 
on R>.  It can be chosen to coincide with q~ at the points m = 0 and m* 
(where the absolute minimum is attained.) The proof is elementary. To 
prove the second claim it suffices to verify that limm~ _+oo IL_(m)l < oo 
which is again elementary. 

From this we have 

JP := fl~ dm exp( - - f l N ( ~ N ( m  ) -- ~~ 

~<2 exp(c2(fl, ~)]WN]) I dvexp(-flN~(fl, e) v 2) 
~>p 

~< 2 exp(cz(fl, e) ] Wur -- flNO(fl, e) p2) (4.38) 
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Thus, on fft~l(N), 

JR <~ Const exp(Const(fl, e) N ~m +6)/2 _ const(fl, e) N L/2+6) (4.39) 

The choice of PN was made to make the last estimate hold. 
Since q~o has bounded third derivatives we have further 

I sup ~b~ +m* + v) - q~~ ~< Const(fl, e) p (4.40) 
v, Iv[ ~<p 

Thus, on fft~l(N), 

lb + (p N ) -- ~ ~  ~< Const(fl, e) N -1/4 + 6/2 (4.41) 

We have from these estimates 

JPN 
<~ Const' exp(Const'(fl, e) N ~1 + 6)/2_ const(fl, e) N i/2 +6) (4.42) 

% 

and 

/@Nexp(N2flL_(m*) WN) 
IpN 

bY--  ~+(pN) ( 28 -flNb+(pN) p2 /4) 1 -  

>~ 1 -cons t ( f l ,  e) PN = 1 -cons t ( f l ,  e) N-1/4+ 6/2 

from which the claim follows for large enough N. | 

(4.43) 

5. THE HOPFIELD MODEL BELOW THE CRITICAL 
T E M P E R A T U R E  

The logarithmic moment generating function of the order parameter is 

1 
L(t, ~i) = ? log cosh(flt �9 ~i)) (5.1) 

The structure of the phase diagram is determined by the averaged function 
�9 ~  For f l > l  there exist precisely 2M global 
minima at positions sm*a v, s = + 1, a v being the vth unity vector of R M. 
These are solutions of the averaged mean field equation 

E[ ~i tanh(m. ~i ) ] = m (5.2) 



Metastates in Disordered Mean-Field Models 1285 

m* is the largest solution of the ordinary Curie Weiss equation 
m = tanh raft. The M symmetric mixtures of the above product measures 

v ~ 1 0 8t v /a~( ) := ~(/ao~(m a ,  ~) + /~O(_m.a  ~, ~)) (5.3) 

are called "Mattis states." They always come in pairs due to the _ sym- 
metry of the model. For more precise information on the Hopfield model, 
also in the case where the number of patterns is allowed to go to infinity, 
see [BGP], [BG1], [BG2]. 

An important role will be played now by the M x M matrix bN((), 
defined by 

N 
,uv u v bN(~) := ~ (~;~i--6uv) (5.4) 

i = l  

bN is symmetric and has vanishing diagonal; note that different elements 
are uncorrelated (unless prescribed by symmetry) but not independent, bN 
will describe the random symmetry breaking between the Mattis states in 
finite volume. Thus, the role that has been played by the random walk 
N ~  WN in the CWRFIM will now be played by the multidimensional 
random walk N ~ bN. 

To explain the asymptotic form of the weights in the extremal decom- 
position recall the definitions before Theorem 2 from the introduction. 
Then we have the approximate formula 

pN(~)~ ~ pV(N-1/2bN(~))lt~(~) (5.5) 
I ~<v<~M 

where the map p: ~r ---, 5 r was defined in ( 1.11 ). Note that (not only M = 1 
V _ 1  but also) M =  2 is a trivial case: For M = 2 we have p~l)(V)_pt2)( )=  ~, 

for all Ve ~r Nontrivial size dependence in the Hopfield model occurs only 
if M>~3. 

We remark that the occurrence of the matrix N-Z/2bN(~) in the 
weights can be easily understood: In fact, its diagonal elements describe the 
energy difference between the M pairs of groundstates tr = _+ ~ ,  since 
EN(~7=~ "u, ~)= 1/2N(bZu(())U"+N/2. For finite temperature the formula 
(5.5) can then be understood if one performs a perturbational calculation 
for the depth of the minima of the random function m ~ ~u(m, ~), thereby 
considering the deviation from its mean value as a perturbation. Precise 
estimates (analogues of proposition 3 for the CWRFIM) that allow for the 
application of proposition 1 and 2 have in fact been done in a different 
context, so that we need not repeat their proofs here; they can be readily 

822/88/5-6-I9 
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read off from [Gen],  where central limit behavior for the measures fiN 
around the randomly shifted minima of the function ~u(m,  ~) was proved. 

It is important to note that, while in the CWRFIM the arguments in 
the exponents of the weights were moving on a scale ,-~N 1/2, now the 
normalization of the central limit theorem is taken. This was the reason for 
favoring the extremal states in the first case. In the Hopfield model, the 
weights will remain spread over all mixtures when NT ~ .  

To state the results precisely we introduce the following objects. 
Following old notations we set 

1 
6xy_lpV(b,~r ~ r (5.6) _ 

It is possible to get an even nicer form: We find it instructive to introduce 
also a metastate that differs from the above by strong approximation of 
bx(~) by a Gaussian process of particularly simple form. To do so, we 
apply the powerful strong invariance principle for partial sum processes for 
Rk-valued independent random variables, whose proof can be found in a 
general context in [Rio]. It states that a sequence of Gaussian random 
variables can be constructed on a common probability space having the 
same k x k covariance matrix that approximates the partial sum process for 
a.e. realization. 

In our case, from [Rio],  p. 1712, Cot. 4 follows that there exist 
onedimensional random variables y~ = y~" for v ~/z, 7~" - 0, on a common 
probability space with ~ s.t.: 

- -  / / v  (i) ?-(Y~ ) l < , ~ < M ; , = l . 2  .... are i.i.d. Normal Gaussians (for dif- 
ferent {/z, v} and n) 

(ii) 

sup Ilb~v v -g%Vll : (~(log N) (5.7) 
N = I , 2  . . . .  

a.s., where 

N 

g~vV= ~ y~v (5.8) 
n = l  

Then we put 

1 ~ (~vpV(gs/x/~)uvj.o(~) 
. : ,  

(5.9) 
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Remark. Note that the matrix elements ofgu  have the advantage not 
only of being Gaussian but also independent (unless prescribed by the sym- 
metry of the matrix) which was not true for the matrices bN. Thus, they 
form a M(M-1)/2 dimensional random walk with Standard Gaussian 
increments. 

With these definitions, the analogues of Theorems 1, 1' are Theorem 2 
and Theorem 2'. 

(i) For all ~ in a full measure set, the set of weak cluster points 
equals 

cK~{pN(~),N=I,2,...}= { ~. q"p~(~),(qV),,=l,...,M~S#' } (5.10) 
l<~v<~M 

where 5 : ' = { (  1, �89 for M = 2  and 5 : ' = 5 :  for M~>3. 

(ii) For all ( in a full measure set, for any continuous function 
F: ~(I2) ~ R the empirical metastate is approximated by 

NT~ 
(5.11) 

(iii) A.s., for any continuous function F: ~(t2)~--~ E the empirical 
metastate is approximated by 

NTce 

(iv) For all ~ in a full measure set the conditioned metastate exists 
and equals 

e(~)(F)= ~_gF ~ pV(g)p~(~) (5.13) 
v = l  

where g is a Normal Gaussian in d .  

In the course of the proof we will have to compare the map p(V) at 
different arguments in the noncompact space s4. To be able to do so, we 
need some information about the continuity of V~--,p(V). We have 

Lemma 6. Define the norm 

2 . It vll . =  sup (w") (5.14) 
u v 



1288 KOIske 

Then 

IIp(V)-p(V')ll~ ~4c(~)(11 v i i .+  IIV- V' l l . )IIV- V'll .... (5,15) 

Proof. Writing V~/~= V/~ we view p(V) as a function of the 
M(M-1 )/2 variables V ~ for ~ < ft. Then the Taylor formula gives 

~ p  v V r p~(V')-p"(V) = ~ ~-~-~(~')( - V)~ 
~ < fl 

where V= V+ 0 ( V ' -  V). It is easy to compute that 

(5.16) 

S_~p=p" ~ log/~ ~ ~ 0 log/~ p 
l _ p , )  0W ~ (pV)2 p,p~/~P 0V~/~ (5.17) 

Now 

0 log pP 
2cV~(~p + 6.p) (5.18) 

V~' 

where we write c = c(fl). Therefore 

OI~ (5.19) 
0 V ~ 

Then 

Ipv(V')-pv(V)l 

=2c pV(1 -pV)(~'(V- V'))"~-(pV) 21 Z pR(~'(V- V') )Rp 
1 g p , p r  

p , p ~ v  A 

= 4cp"(1-pV) sup I(~'( V -  V'))~[ (5.20) 
2 

where all p, ffs are taken at the argument V. 
Note that 

sup [(~'(V- V'))~ I 4%< II ~'tl.,., IIV- V'llss 
2 

~ ( IP Vll ~., + ll V -  V' ll ,O li V -  V' l[ ,.,. (5.21) 

Summing over v gives the lemma. I 
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Finally we come to the 

Proof o f  Theorem 2 and 2'. From [Gen] ,  proposition 1.3. 
immediately follows that for any 0 < 6 < l, p < m*/2, s = +_1, 

\ - ~ )  (1 + (9(N a)) 

~(r - ~ P" (6~(~)) (1 + e(i-~)) 
.=, \ ~ - /  

(5.22) 

(9(N -~) is here nonuniform in ~.6 
We have to use information on the minimum and maximum size of 

bN(~)/x /~.  In fact, from the Law of Iterated Logarithm for partial sums of 
~k-valued random variables (see for this statement, which is true more 
generally in Banach spaces, e.g. [LT] ,  Theorem 8.2) we have 

bN(~) <.Cons, 1,/i- U (5.23) 

a.s. for N >/N0(l) sufficiently large (with some arbitrary matrix norm.) This 
gives 

.(bN(r 
P l - - - ~ j  <~ (ln N) K (5.24) 

with some constants K = K(fl), for N sufficiently large. 
It is easy to see with this information that from (5.22) follows that 

.v \ 

| l ira fiN(~)[Bp(sm*aV)] ~----~ {biv(~)) ]  : 0 (5.25) 

~%P t,--~-// 

This, in the language of Chapter 3, is property CR(p) along a sequence of 
N-independent exceptional sets ~ ( N ) -  ~ '  for the fixed full measure set 
J r '  where the assumptions necessary for the above estimates hold. Now we 
apply our general reasoning. From the third remark after Lemma 2 in 
Chapter 3 follows that this implies CR(p) for fiN. (In fact, technically, it is 

6 It means precisely that for a.e. ~ there exist N0(l) and Const(~), s.t. for all N>~No(~) the 
term is bounded by Const(~) N 6 
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typically proven before!) Due to the second remark after Lemma 2 we have 
then CR(pN) which suffices for all our needs. Note further, that because of 
the N-independence of g ( N ) =  ~ '  we don't have to worry about excep- 
tional sets any more when applying any of the propositions 1 or 2. 

Thus, Theorem 2'(ii) follows from proposition l(ii). 
Theorem 2'(iii) follows from proposition l(ii) and the following 

fact: Property CR(p) with the probability vector p(bN/q/N) implies the 
property CR(p) with the probability vector p(gN/x/~). To show the latter 
it suffices to show that, a.s. 

(b~NN) (g~NN) lira p - p  = 0 (5.26) 
N]'oo 1 

But Lemma 6 implies 

P - - P  1 

4c(,B) (5.27) ~< ~ (Ilbul[ ss + [[ bN - -  gN[[ ss) [IbN-- gN[I s s  

Using now the law of iterated logarithm (5.23) and the strong approxima- 
tion property (5.7) for IbN--gNI,s the desired estimate (5.26) follows. 

To prove Theorem 2'(iv) and Theorem 2, let us first note the finite 
volume perturbation property, necessary for Proposition 2: It is clear that, 
for fixed finite volume V, supr V [b~(~)-  bN(~ + ~v)[ ~< Const(V). Then, we 
have from Lemma 6 

lim sup p\~-j-p\ ~/~-  / 
NT,:~ ~x V 

4c(fl) 
T ( IIbN(~)[[,, + Const(V)) Const(V) (5.28) 

Using (5.23) the r.h.s, goes to zero for almost all ~/. 
Let us now denote by ~' an independent copy of ~. Note that we have 

the two approximation properties given by proposition 2(i) and (ii). Then 
we construct, as above, a strongly approximating process g', but this time 
for ~', such that it is independent of ~. It follows that 

( M ( b ' ) )  ( ( g ~ v ' ~ )  v N(~) v ~ pV /tL(~) ~ 0  (5.29) 
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a.s., for bounded continuous F, with NT c~. Putting this together with 
Proposition 2(ii), we obtain directly Theorem 2'(iv). For Theorem 2 we get 
from Proposition 2(i) 

N~o~lim f~Cu(~)(d/~)F(~t)'~lim l ~ -N ,=, P" f\x/~j I~(~) ) g"~ (5.30) 

Since we are only interested in distributions, we replace g',/v/~ by W,./x/~, 
with t,  = n/N where IV, is a Brownian motion. But then (5.30) is nothing 
but a Riemann sum for the continuous function t ~ F(p v(W,/v/t) ll ~(~)). 
Thus it converges for almost all realizations of W, to the corresponding 
integral with NT oo. But, from this follows that the distribution of (5.30) is 
the same as that of (1.12) which proves Theorem 2. 

To prove the result about the cluster points, Theorem l'(i), it suffices 
to consider the cluster points of the weights p(bu/x/~), N= 1, 2,.... Now 
we use the following 

I . e m m a  7. Let X,., i =  1, 2 .... be a sequence of i.i.d, k-dimensional 
Normal Gaussians. Then, a.s., the set of the cluster points of the sequence 
1 /x /~  ~ =  1 X,., N =  1, 2 .... equals all of ~,.  

The proof is not difficult: Given a neighborhood of a rational point in 
R k it is easy to construct a sparse subsequence that hits it infinitely often 
with probability one. We don't give the details here. 

But from that we have in particular cg~(bu/v/N, N =  1, 2,...) = d a.s. 
This implies Theorem l'(i) by continuity o f p  and 

I . e m m a  8. p ( d )  equals all of 5/' for M~> 3. 

Proof. It suffices to show that, given any vector l = (l,)t, = L..., M ~ R " ,  
there exist a real number b and a matrix V~ d ,  s.t. 

lu+b=(V2)~% p = l  ..... M (5.31) 

The difficulty about this linear system of equations for the M(M-1)/2 
quantities (VUV) 2 is that it fails to give nonnegative solutions for arbitrary 
choices of l and b. Thus the freedom in the choice of b is really necessary. 
As an ansatz we consider a matrix of the type 

5 
V~'- 1'~ = Vl"l'- 1 = X / ~ ,  /t =4,..., M (5.32) 

V ~'~ = V TM = 0 otherwise 
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with 2, >~ 0, where the condition in the second line is empty for M = 3. It 
turns out then that the solution of (5.31) with b = 0  has the general form 

2~ = l  I - k 1 2 - - 1 3 b ( 1 4 - - l s  +16--17-b  . . .  + _ ( - - I ) M  IM) 

2 2 = 1 1 - 1 2 + 1 3 - ( 1 4 - 1 5 + 1 6 - 1 7 + _  . . .  +(--I)M/M) (5.33) 

23 = - - l  1+12 +13 - ( 1 4  - 1 5  + 1 6 - 1 7  + . . . +(--1)M/M) 

and 

, ~ 4 = 1 4 - 1 5 + 1 6 - 1 7 •  . . .  +(--1)M/M 
, ~ 5 = 1 5 - - 1 6 - F l 7 ~  "'" + ( - - 1 )  M+I  IM 

,~6=16--17-Fl8 +_ . . .  +(--1)M/M (5.34) 

~M ~ l M 

It suffices to prove the statement for l's in the special form l 3 >1 l I >i 12 and 
(12 ~> ) 14 >~ 15 >/ ... i> l ~ >  0. But, using this order relation, it follows for the 
solution of (5.31) with b = 0 that 2, ~> 0 for all 2 ~<p ~< M, whereas 21 can 
be possibly negative. But note that for the solution of (5.31) with 2 u = 0  
and b>0 ,  we have 2 1 = b > 0  for M odd (resp. 2 1 = 2 b > 0  for M even), 
2~ ~> 0 for 2 ~</1 ~< M. Thus, by adding a sufficiently large b > 0 to the fixed 
l u's one can always force the corresponding 21 to become positive without 
destroying the positivity of the other 2,'s. This proves the claim. | 
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